VALUING COMBINED CYCLE GAS TURBINE POWER PLANTS IN ENERGY TRADING
by Mark Houldsworth, PhD and Rich Pastore, CFA

l. Overview

The method by which energy trading operations calculate the value and measure the risk for combined cycle gas
turbine (CCGT) power plants presents various challenges and pitfalls. In today’s market, most practitioners utilize
one of two dominant methods:

® Closed Form Approximations (Kirk) — Many choose this closed form spread option approach for its ease-
of-use and speed, but this method has a number of weaknesses, especially relating to the incorporation
of start-up costs and other state-transition costs.

= Monte Carlo Solutions — To compensate for the shortcomings of closed form approaches, other
practitioners utilize Monte Carlo, a technique clearly capable of handling the multiple dimensions of the
combined cycle valuation problem; but its computationally-intensive problem convergence often proves
impractical, taking too much time to calculate all of the required hedge sensitivities.

In this article, we present a better valuation choice. Our method utilizes a three-dimensional Gaussian
quadrature capable of generating the precision of Monte Carlo with the quick run-time of a closed form
calculation. Our technique provides answers in seconds and the flexibility to integrate, either tightly or loosely,
into most energy trading risk management (ETRM) systems.

Il. Closed Form Solutions Oversimplify CCGT Plants

ETRMs most commonly deploy a closed form spread option method to value and capture the risk associated with
generation assets. For example, at the end of the day, the ETRM will call the Kirk spread option model. All of the
underlyings, their volatilities, the position, and other data will be fed into that spread option model, which will
then generate and populate a long power delta, a short gas delta, and other hedge sensitivities for the relevant
power price curves. These curves will generally include the 5x16, 5x8, 2x16, 2x8, and sometimes a super peak
curve.

The closed form model provides the user with significant speed advantages, generating results — even for large
portfolios — in minutes.

If the plant is a high heat rate peaker and one populates a super peak curve, then one might achieve satisfactory
results with a spread option instrument struck at the elevated heat rate. Typically, these peaker plants have one
operating mode and a small start cost that can easily be folded into the strike. Their off-peak risk profiles, for the
most part, are negligible; however, imprecision still exists in this readily-dismissed area.

Where high heat rate peakers typically have a small degree of imprecision with regard to off-peak risk
measurement, the CCGT power plant presents a far more substantive problem. The owner of the CCGT clearly
has a number of spread-like options at expiry based on the realized day-ahead schedule. However, one cannot
capture this array of possible expiry payoffs in a useful way with a 2-factor spread option instrument, like the Kirk
model.
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Consider the following three complicating aspects when analyzing a CCGT:

= Start Cost: Even if the start costs are fully loaded onto the 5x16 or 2x16 instrument strikes, the off-peak deltas
typically vanish or are very low. Very frequently, however, CCGT operators run at a loss, either at HSL or LSL,
to avoid the start cost. This may be the optimal solution, and it involves generating power and consuming
natural gas off-peak; but the simple closed form solution shows sub optimal deltas and ignores the true
terminal position possibilities.

= Multiple Operating Modes: Typical CCGT plants have multiple operating output states, each with its own
average heat rate and sometimes its own variable operating and maintenance (VOM) charge. It is difficult to
fold these conditions into a coherent spread option structure and maintain the logic.

= Hourly Optimization: Positing spread options on aggregated curves ignores the hourly optimization which
plant operators perform in day-ahead markets. At expiry (day-ahead) plant operators will bid the solution to
a dynamic programming problem. This will be a very precise solution that will obey Min Up, Min Down, and
perhaps Max Start constraints imposed on the asset. It is impossible to capture this behavior in a spread option
structure pointed at aggregated curves.

These three aforementioned features constitute the dominant problem when attempting to capture CCGT
positions with spread options in an ETRM. They apply equally to physical positions, tolling positions, and revenue
puts or calls. The illustration below demonstrates the potential magnitude of error that a closed form solution
may suffer in comparison to the superior results of our Gaussian quadrature method.?

Inputs Results for 4-Month Capacity Position
CCGT Inputs Closed Form Gaussian Quad Difference
Plant MW 500
Heat Rate 7.40 Margin $13,658,705 $14,941,539 $1,282,834
VOM $2.00
Start Cost $10,000 Gas Delta (22,952,872)| | (24,220,059) (1,267,187)
Market Inputs On-Peak Delta 3,167,961 3,086,811 (81,150)
Gas $3.04
5x16 $28.78 Off-Peak Delta 100,939 396,917 295,978
5x8 $18.63
Vol Gas 35%
Vol 5x16 40%
Vol 5x8 25%
Corr Gas/5x16 75%
Corr Gas/5x8 65%

! This is dominantly an illustrative result, there are a number of other assumptions behind the results here. The authors
are happy to provide a remote demonstration with further details on request. Also, see Sample Output section on page 5
to see the full family of Greeks generated.
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Ill. The Monte Carlo Alternative Presents a Different Set of Difficulties

If we leave the closed form methods that are native to ETRMs, we enter a realm of models developed outside the
system. These external models are then integrated, either loosely or tightly, into the ETRM with the intent to
more accurately capture risk for gas-fired power plants, especially CCGT plants, through the utilization of Monte
Carlo techniques, thereby moving the problem to 3-dimensions, jointly realizing on-peak, off-peak, and natural
gas prices

If one is willing to accept a GBM price process, and presume a very large number of samples, we can state the 3-
dimensional Monte Carlo value solution as follows:

n
1
E[Valuey] = —* z Payoff; xe™'T
i=1

The term Payoff; is a very general term here. It contains the randomly realized and correlated underlyings for
the i-th simulation.? Further, for every realized price triple, there will be a unique, optimal, algebraic payoff that
can be calculated and stored.

All of the possible output states for both on-peak and off-peak can be valued along with all of the transition costs
between states. If hourly granularity and hourly constraints are desired, one can impose hourly shapes and embed
dynamic programming solutions for each triple.

In the end, one can extract more accurate deltas, vegas, gammas, and cross gammas using finite difference
methods.

The upside in using the Monte Carlo is that one achieves a far more accurate solution at expiry and the resulting
deltas, therefore, will be far more accurate.

There is a big downside, however, with the Monte Carlo. The solution tends to be very slow — perhaps too slow to
be practical in an end-of-day calculation for the ETRM. Even the calculation of a 2-factor spread option in Monte
Carlo takes a very large number of samplings to achieve convergence. This problem compounds in three
dimensions. Moreover, to generate a complete set of hedge sensitivities, the premium may need to be calculated
10 to 15 times for weekdays, weekends, and each calendar month.

2 |f one is confident that the correlation imposed is of full rank, then Cholesky can be used to generate correlated random
samples in this. Otherwise one can use PCA or Singular Value Decomp methods.
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IV. A Better Choice — Robust Valuation that Utilizes Gaussian Quadrature Techniques

“Closed form” generally means that the solution involves only mathematical functions — many of us take that term
to mean “speedy”. Keeping speed in mind, the Gaussian quadrature method loses very little of the speed
advantage of the closed form while still maintaining the accuracy and robustness of Monte Carlo. The model
achieves stable and fast calculations using Gaussian quadrature methods.?

Gaussian quadrature methods provide for specific abscissas and associated weights so that the function value can
be specified as a weighted sum of function values where the function values are measured at the abscissas given.
Given the weights one needn’t use large samples with the weight 1/n. So long as the dimensions required are not
large, say 2 to 5, the method can value very complex assets in seconds®.

We can summarize the valuation method as follows:

ni N nk

E[Value,] = z z z Payoffij * f(xinj:xk)‘ xeTT

i=1j=1k=

And,

f(xu x]:xk) - \/Eg (WL * W_] * Wk)

Where n represents the number of evaluation points chosen for each dimension, w represents weights from the
Gauss Hermite polynomials, and x represents abscissas from the Gauss Hermite polynomial.

Again, the Payof f; ;  is a unique, optimal payoff for the weighted triple, and is driven by all of the items discussed
above (start cost, ramp costs, state values, and transitions). It may accept a shape and deploy a dynamic
programming solution over the hours for each triple.

3 We use the same Gaussian quadrature method for our 2-factor spread options as the method avoids the Kirk problem where
the non-stochastic strike is introduced into the d1 term, which can cause problems when the strike is large relative to the
underlyings.
4 One can generally get good answers with say 20 to 30 points per dimension, in contrast to several hundreds of thousands
or more required in the Monte Carlo.
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V. Sample Outputs

The following table provides the reader with a detailed view of the outputs of the model. The results were
generated by modelling a plant with 3 operating modes, ramp fuel between states, and other details. The results
of the model also include (not shown) probabilistic turbine starts and turbine hours. With these results the model
quickly shows the margin per turbine start or the margin per turbine hour and can assist in optimizing the starts.

1/1/18 2/1/18 3/1/18 4/1/18
1 BlendedPremium S 3147 | & 2462 | & 4494 | & 4,570
2 WkDay Margin 5 780,883 | 5 546,915 | § 1,062,247 | & 1,031,582
3 Whnd Margin 5 155,716 | 5 114,886 | % 275,185 | & 284,649
4 Total Margin 5 936,599 | 5 661,801 | § 1,337,432 | & 1,316,231
5 GasDelta (0.7071) [0.6555) (0.8124) [0.7982)
] 5x16 Delta 0.9907 0.9317 0.9835 0.9742
7 2x16 Delta 0.8864 0.7607 0.9109 0.8905
B offDelta 0.1863 0.2323 0.5567 0.5598
g GasVega 0.0104 0.0144 0.0230 0.0278
10 DnVega (0.0128) (0.0168) (0.0256) (0.0311)
11 offvega (0.0005) (0.0010) (0.0034) (D.0042)
12 GasGamma 0.0666 0.1000 0.0674 0.0695
13 DnGamma 0.0333 0.0692 0.0241 0.0291
14 DffGamma 0.1462 0.1343 0.1345 0.1176
15 GasOnXGamma (0.0384) (0.0756) (0.0289) (0.0320)
16 GasOffXGamma (0.1256) (0.1189) (0.1280) (0.1158)
17 OnOffXGamma (0.0870) {0.1056) (0.2322) {0.2302)
18 WhkDay Generation 152,728 134,094 176,155 167,054
19 Whknd Generation 56,324 44,663 69,290 67,122
20 WhkDay FuelBurn 1,069,571 939,227 1,233,111 1,169,496
21 Whknd FuelBurn 394,362 312,664 485,034 469,860
22 Total Fuel Burn 1,463,934 1,251,892 1,718,145 1,639,356
23 Turhine Starts 23.37 17.45 12.95 11.87
24 5x16 Gen 139,473 118,937 137,905 130,459
25 2x16 Gen 51,022 38,783 53,425 51,253
26 7x8 Gen 18,557 21,037 54,115 52,464

VI. Contact Information

We hope that our readers have found this brief article interesting. Please feel free to contact us with any questions

or comments.

Mark Houldsworth: 832-453-8319
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Rich Pastore: 832-545-0243
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